LIVER FUNCTION TESTS

University of PNG
School of Medicine and Health Sciences,
Division of Basic Medical Sciences,
Discipline of Biochemistry & Molecular Biology
VJ Temple
What are some of the functions of the Liver?

Liver is involved in:

• Metabolism of Proteins, Carbohydrates and Lipids,
• Biosynthesis and breakdown of blood cells,
• Detoxification of endogenous and exogenous compounds,
• Formation of Bile,
• Storage of Glycogen,
• Formation of Urea and Ketone Bodies,
• Conjugation of steroid hormones,
• Detoxification of Drugs and Toxins,
• Biosynthesis of Plasma Proteins,
• Inactivation of Polypeptide hormones,
• **Significance of Healthy Liver to biochemical processes occurring in living organism cannot be over emphasized;**
What do you understand as Liver Function Tests (LFT)?

• Liver Function Tests (LFT) are:
 • Crude Indices of Hepatic Structure, Cellular Integrity, and Function;
 • Based on measurements of substances released from damaged hepatic cells into the blood;
 • Measurements of blood components that gives idea of the Existence, Extent and Type of Liver damage;
• LFT provide useful information about the Presence and Severity of Hepatobiliary Injury or Impairment of Liver Function;
What biochemical parameters are in LFT?

• Biochemical parameters in LFT are:
 • Bilirubin (Conjugated and Unconjugated),
 • Alanine Aminotransferase (ALT),
 • Aspartate Aminotransferase (AST)
 • Alkaline Phosphatase (ALP),
 • Gamma Glutamyl Transpeptidase (GGTP or γGT)
 • 5`-Nucleotidase,
 • Serum or Plasma Albumin,
 • Total Protein,
What do the biochemical parameters indicate?

Biochemical parameters assist in differentiating:

- **Acute Hepatocellular damage:**
 - Serum Aminotransferase (ALT & AST) activities are a measure of the Integrity of the Hepatocytes;
 - ALT & AST levels in plasma/serum are a sensitive index of hepatocellular damage,
 - ALT & AST are located mainly in the Peri-portal area of the Hepatocytes, thus do not give reliable indication of Centri-lobular Liver damage;
• **Obstruction to the biliary tract:**
 • Indices of Cholestasis and blockage of bile flow:
 • Serum Total Bilirubin concentration, and
 • Serum Alkaline Phosphatase (ALP) activity;
 • Gamma Glutamyl Transpeptidase (GGTP),
 • 5`-Nucleotidase,

• **Chronic liver disease:**
 • Serum Albumin concentration
 • (It is a Crude measure of the Synthetic Capacity of the Liver, although it is affected by many other factors);
Can a single biochemical test be used to assess liver function?

- Liver is highly Compartmentalized;
- No Single Biochemical Test can be used to fully access functional state of the Liver;
- LFT is used to determine hepatic dysfunction, if any,
- Objectives of LFT and diagnostic models for LFT are:
 - Sensitive detection of suspected dysfunction,
 - Document an abnormality,
 - Determine type (Cholestasis vs Hepatocellular disease) and Site (Intra-hepatic vs Extra-hepatic) of Injury,
 - Follow-up of patients with Hepatic diseases;
• No single biochemical test can satisfy all these objectives,

• Combination of Tests used: Liver Function Tests

• Each selected test must satisfy the following:
 • Diagnostic sensitivity in screening for dysfunction,
 • Specificity for liver disease,
 • Selectivity in differentiating these disorders;
What are the criteria used to select parameters in LFT?

Some of these criteria include the following:

• **Tests based on substances that are produced or synthesized by Liver**, Examples:
 • Albumin,
 • Cholinesterase,
 • Coagulation factors
• Tests based on substances released by damaged Hepatocytes:

• These Tests are separated into two groups:
 • Endogenous compounds released by damaged hepatocytes,
 • Examples: AST and ALT;
 • Endogenous compounds synthesized at Increased rate or Released by Canalicular membrane, Bile duct epithelium and Endothelium of central and periportal veins:
 • Examples: ALP, GGTP, 5’Nucleotidase;
• Test based on substances cleared from plasma by Liver:
• Can be separated into two groups:
 • Endogenous metabolites: Examples:
 • Bilirubin, Bile acids, Ammonia;
 • Exogenous compounds: Examples:
 • Aminopyrine, Lidocaine, Indocyanine green, Caffeine
Give major causes for increase in blood Bilirubin level

• Major causes for increase bilirubin levels in blood:
 - **Hemolysis:**
 • Damage to RBC may cause increased breakdown of Hb producing Unconjugated Bilirubin, which may overload liver Conjugating system, causing Hyperbilirubinemia;
 - **Failure of Conjugating system in the liver,**
 - **Obstruction in the Biliary System,**
IMPORTANT TO NOTE

• Conjugated & Unconjugated Bilirubin are in plasma,
• Conjugated Bilirubin is soluble in aqueous medium,
• Conjugated Bilirubin can appear in urine,
• Unconjugated Bilirubin is not soluble in aqueous medium, Albumin binds and transported it to liver,
• Unconjugated Bilirubin cannot appear in urine,
• Unconjugated Bilirubin is Neurotoxic; if blood levels rise too high in Neonates, permanent brain damage may occur;
• Conjugated Bilirubin is excreted into the bile,
• Bacteria in gut metabolize conjugated bilirubin, producing Urobilinogen and Stercobilinogen,
• Urobilinogen is partly reabsorbed via Entero-hepatic circulation of Urobilinogen in adults,
• Urobilinogen is excreted as Urobilin that is responsible for coloration of urine,
• Stercobilinogen is excreted as Stercobilin that is responsible for coloration of feces,
• If Stercobilinogen is not formed in the GIT the stool color is pale;
What is the diagnostic significance of AST?

• **AST**: {old name is: Serum Glutamate Oxaloacetate Transaminase (SGOT)}

• AST is high in Heart muscle, Liver and Skeletal muscle, but low in Kidneys, Pancreas, RBC;

• Damage tissues releases AST in blood;

• AST level in blood is directly related to extent of cellular damage or injury;

• Amount of AST in plasma depends on length of time that the blood was drawn after injury (Why?)
 • Because AST is cleared from the blood in a few days;
• **AST** level in plasma is elevated 8 hrs after cellular injury, peak at 24 to 36 hrs, and return to normal in 3 to 7 days;

• **AST** level in blood is always high in patients with chronic Hepatocellular disease,

• Acute Hepatitis: AST in plasma is about 20 times the normal value;

• Acute Extra-hepatic Obstruction (e.g., Gallstone), AST levels quickly rise to 10 times normal and swiftly falls

• Cirrhotic patients: level of AST in plasma depends on the amount of active inflammation;
What factors can interfere with levels of AST in Serum?

- Factors that interfere with serum AST include:
 - Pregnancy: causes decreased levels of AST,
 - Exercise: causes increased levels of AST,
 - Drugs, such as:
 - Anti-hypertensives,
 - Cholinergic agents,
 - Coumarin-type Anticoagulants,
 - Oral Contraceptives,
 - Opiates,
 - Salicylates,
 - Hepatotoxic medications,
What is the diagnostic significance of ALT?

- **ALT**: {Old name Serum Glutamate Pyruvate Transaminase (SGPT)}
- ALT found mainly in Liver, lesser quantities are in Kidneys, Heart and Skeletal muscle;
- Liver injury causes elevation of ALT level in blood;
- ALT: sensitive, specific indicator of liver disease,
- ALT level is more Liver-specific than AST;
- ALT level is directly related to extent of liver injury,
- Elevation of ALT in plasma depends on length of time that the blood was drawn after damage or injury (Why?)
 - Because ALT is cleared from the blood in a few days
• **ALT** level in plasma is elevated 8 hrs after cellular injury, peak at 24 to 36 hrs, and return to normal in 3 to 7 days;

• **AST** is released more than **ALT** in Chronic Hepatocellular disease (Cirrhosis);

• In most Hepatocellular disease other than Viral Hepatitis **ALT/AST** ratio (DeRitis ratio) is usually less than 1;

• In viral hepatitis the ratio is usually greater than 1;

• Large number of drugs can increase serum level of ALT;
What is the diagnostic significance of ALP?

• ALP activity is increased in an Alkaline (pH 9 to 10) medium
• ALP is highest in Liver, Biliary Tract Epithelium, Bone, Placenta
• ALP is in Kupffer’s cells lining Biliary collecting system,
• Plasma ALP level is use to detect disorders in Liver and Bone;
• Liver disease: increase plasma ALP is due to synthesis by cells lining Bile Canaliculi, in response to Intra-hepatic or Extra-hepatic Cholestasis;
• ALP level in plasma is greatly increased in both Extra-hepatic and Intra-hepatic Obstructive Biliary Disease and Cirrhosis;
• Hepatic tumors, Hepatotoxic drugs and Hepatitis may cause smaller elevations in serum ALP levels;
What are some of the Extra-hepatic sources of ALP?

- Bone is the most frequent Extra-hepatic source of ALP;
- New bone growth causes elevated blood levels of ALP;
- Healing fractures,
- Rheumatoid Arthritis,
- Hyperparathyroidism;
- Placenta,
 - Placental ALP appears in maternal blood usually in the third trimester of pregnancy;
- Small intestine,
- Kidneys,
How are the Isoenzymes of ALP used in diagnosis?

• Two major Isoenzymes: ALP-I, ALP-II
• ALP-I: produced mainly in Liver is Heat Stable,
• ALP-II: produced in Bone (ALP 2) is Inactivated by heat,
• They are used to distinguish liver and bone diseases;
 • By Heat Stability Test and by Electrophoresis,
• Detection of Isoenzymes help determine source of pathology condition causing elevated Total ALP in blood;
• ALP-I is expected to be higher in Liver disease;
How can 5`-Nucleotidase be used to determining source of high level of ALP in blood?

- Source of elevated ALP can be determined by testing the same serum sample for 5`-Nucleotidase,
- 5`-Nucleotidase is produced predominantly in the Liver,
- If both total ALP and 5`-Nucleotidase are elevated in plasma, then Liver is the source of the ALP;
- If plasma level of 5`-Nucleotidase in normal, but level of ALP is elevated then Bone is the most probable source of the elevated ALP,
- In certain individuals with type B and type O blood, the serum ALP may be elevated;
What is the diagnostic significance of GGTP?

- **GGTP (γGT):** Catalyzes transfer of Amino Acids and Peptides across membrane and involve in Glutathione metabolism;
- GGTP level is very high in Liver and Biliary Tract, but low in Kidney, Spleen, Heart, Intestine, Brain and Prostate gland,
- GGTP levels are higher males because of levels in Prostate,
- Test for GGTP is used to detect Liver cell dysfunction,
- GGTP test is highly accurate in indicting Cholestasis,
- GGTP is the most sensitive Liver enzyme for detecting Biliary Obstruction, Cholangitis, or Cholecystitis,
- Elevation of GGTP parallels that of ALP in Liver disease,
- GGTP is not increased in Bone disease,
IMPORTANT TO NOTE

• Normal plasma level of GGTP with elevated ALP level may indicate Skeletal disease,
• Elevated plasma level of GGTP and elevated ALP may indicate Hepato-biliary disease,
• GGTP is not elevated in childhood or pregnancy;
• GGTP can be used to detect Chronic Alcohol Ingestion,
• GGTP is useful in screening and evaluation of alcoholics,
 • GGTP is elevated in about 75% of patients who chronically drink alcohol,
• GGTP level is usually elevated about 1 to 2 weeks after myocardial infarction;
TOTAL PROTEIN (Albumin and Globulins)

- Albumin and Globulins constitute most of the proteins in blood and are measured as Total Protein;
- Albumin is synthesize in the Liver,
- Albumin transports important blood constituents, such as drugs, hormones, and enzymes,
- Globulins: key components of Antibodies, Glycoproteins, Lipoproteins, Clotting Factors, Complement Proteins, Acute-Phase Reactant,
- Some Globulins are synthesize in Liver, but most are made in Reticuloendothelial System,
- Albumin and Globulins can be measured separately,
What is the diagnostic significance of Albumin in blood?

• Albumin is the major protein synthesized in liver, thus can be use to assess hepatic function,

• Estimation of Pre-albumin is a better assessment of liver function,

• In some diseases of the liver, hepatocytes are unable to synthesize albumin, thus plasma albumin level drops,

• Half-life of albumin is 12 to 18 days, thus, severe impairment of hepatic albumin synthesis may not be recognized for several weeks or even months,

• Hypo-albuminaemia is a feature of advanced chronic liver disease and severe acute liver damage,
• In some Chronic liver diseases, Albumin level is low, but Globulin level is high given normal Total Protein level,
 • Reason might be that liver cannot produce Albumin, thus the low albumin level, but Globulins are mostly made in Reticuloendothelial system, thus their levels may increase during infection;
• These changes can be detected by measuring the Albumin/Globulin (A/G) ratio or performs Protein Electrophoresis,
• A/G ratio is not a diagnostic parameter,
• Malnutrition can cause decrease Albumin level in blood,
What is the significant of Prothrombin Time in LFT?

- **Prothrombin Time** is a measure of the activities of certain Coagulation Factors made by the Liver,
- It is used as indicator of Hepatic Synthetic Function,
- Prothrombin has a very short half-life, and
- An increased Prothrombin time may be the earliest indicator of hepatocellular damage,
References

• Textbook of Biochemistry, with clinical correlations, Ed. By T. M. Devlin, 4th Ed.
• Biochemistry, By V. L. Davidson & D. B. Sittman. 3rd Edition.
• Hames BD, Hooper NM, JD Houghton; Instant Notes in Biochemistry, Bios Scientific Pub, Springer; UK.