PITUITARY HORMONES: An Overview

University of Papua New Guinea
School of Medicine & Health Sciences,
Division of Basic Medical Sciences,
Discipline of Biochemistry & Molecular Biology,
PBL MBBS III

VJ Temple
What are the major sections in the Pituitary Gland?

- Pituitary Gland contain two major sections:
 - **Anterior Pituitary** (Adeno-hypophysis):
 - Glandular Anterior Lobe
 - **Posterior Pituitary** (Neuro-hypophysis):
 - Neuronal Posterior Lobe
- Different mechanisms regulate the hormones produced from each section;
How is the Pituitary function regulated?

• Hypothalamus regulates Pituitary Function;
 • Hypothalamus is connected to Anterior Pituitary via Hypothalamic-Hypophysial Portal System (HHPS):
 • HHPS are capillaries that carries blood from Hypothalamus to Anterior Pituitary and back to Hypothalamus;

• Releasing Hormones produced in the Ventral Hypothalamic Neurons are carried via the Hypothalamic Portal System into the Anterior Pituitary where they stimulate or inhibit the production of Anterior Pituitary hormones;
• Hypothalamus is connected to the Posterior Pituitary via the Hypothalamic Tract;

• **Para-ventricular and Supra-optic nuclei** of the Hypothalamus secrete hormones into the **Posterior Pituitary** for storage and release in the blood;
What are the Anterior Pituitary Hormones?

• Hormones released by Anterior Pituitary;
• There are Six Anterior Pituitary Hormones:
 • Thyroid Stimulating Hormone (TSH or Thyrotropin),
 • Follicle Stimulating Hormone (FSH, Gonadotrophin),
 • Luteinizing Hormone (LH, Gonadotrophin),
 • AdrenoCorticoTropic Hormone (ACTH or Corticotrophin)
 • Growth Hormone (GH)
 • Prolactin (PRL)
What are the primary targets of Anterior Pituitary Hormones?

- **TSH**: Target is **Thyroid Gland**;
- **FSH**:
 - Targets in females: **Follicles in the Ovaries**,
 - Targets in males: **Testes**,
- **LH**:
 - Targets in females: **Follicles**,
 - Targets in males: **Testes**,
- **ACTH**: Targets in **Adrenal Cortex**,
- **GH**: Targets in **most tissues** in the body;
- **PRL**: Targets in **Mammary glands**;
What are the major functions of Anterior Pituitary Hormones?

• **Major functions:**

• **TSH:** Stimulates secretion of Thyroid Hormones;

• **LH:**
 • **In Females:** Triggers Ovulation, increases secretion of Estrogen, Progesterone;
 • **In Males:** Stimulates production of Testosterone;

• **FSH:**
 • **In Females:** Stimulates growth and maturation of Follicle (Oocyte);
 • **In Males:** Stimulates Sperm production and maturation;

• **ACTH:** Causes the secretion of Glucocorticoid;
• **GH:**
 • Stimulates metabolism and growth of body tissues,
 • Stimulates Protein synthesis and Lipolysis,
 • Stimulates production of Insulin-like Growth Factor (IGF) in Liver,
 • **Diabetogenic action:** decreases glucose uptake in cells, thus resulting in increase blood glucose level;

• **PRL:**
 • Stimulates development of mammary glands,
 • Stimulates Lactation in females;
 • Inhibits ovulation by blocking Gonadotropin Releasing Hormone (GnRH),
 • Function is males not well defined;
How are the Anterior Pituitary Hormones regulated?

- Anterior Pituitary hormones are regulated by Hypothalamic Factors (Releasing Hormones) from the Ventral Hypothalamus;
- Fig. 1: Hypothalamic-Anterior Pituitary Axis:
 - Diagrammatic representation of Hypothalamic Factors (Releasing Hormones) and corresponding hormones produced in the Anterior Pituitary;
Fig. 1: Hypothalamic-Anterior Pituitary Axis:

<table>
<thead>
<tr>
<th>Hypothalamus</th>
<th>TRH</th>
<th>CRH</th>
<th>GnRH</th>
<th>GHRH</th>
<th>Dopamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anterior Pituitary</th>
<th>TSH</th>
<th>ACTH</th>
<th>LH</th>
<th>FSH</th>
<th>GH</th>
<th>Prolactin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Targets</th>
<th>THYROID</th>
<th>ADRENAL CORTEX</th>
<th>GONADS</th>
<th>Liver & Other tissues</th>
<th>Mammary Glands & Other tissues</th>
</tr>
</thead>
</table>
What are the Hypothalamic Factors (Releasing Hormones)?

- Hypothalamic factors or releasing hormones are:
 - Thyrotropin Releasing Hormone (**TRH**);
 - Gonadotrophin Releasing Hormone (**GnRH**);
 - Growth Hormone Releasing Hormone (**GHRH**);
 - Corticotrophin Releasing Hormone (**CRH**);
 - Dopamine (**DA**) or Prolactin Inhibitory Factor (**PIF**);
 - Somatostatin (**SS**);
What are the functions of the Hypothalamic Factors (Releasing Hormones)?

• With the exception of Prolactin, the hypothalamic factors enhances secretion of Pituitary Hormones;

• Specific functions are as follows:
 • **TRH**: Induces secretion of **TSH** and **Prolactin**;
 • **GnRH**: Induces secretion of **LH** and **FSH**;
 • **GHRH**: Induces secretion of **GH**;
 • **Gherelin**: Peptide hormone released from epithelial cells lining the fundus of the stomach acts on the Anterior Pituitary to **enhance** secretion of **GH**;
• **CRH**: Induces production of Proopiomelanocortin (POMC),
 • POMC is then hydrolyzed to ACTH, gamma-MSH and beta-Lipotrophins,
• **Dopamine or Prolactin Inhibitory Factor (PIF)**:
 • Inhibits release of Prolactin;
• **Somatostatin (SS)**: Inhibits release of GH, TSH;
What are the major classes of Anterior Pituitary Hormones and how are they related?

• **Three** major classes (categories) of Anterior Pituitary Hormones:

• **Glycoprotein Hormones:**
 • They contain alpha-subunits and beta-subunits,
 • Alpha-subunits are similar,
 • Beta-subunits have hormonal activity;

• **Growth Hormone –Related Hormones (GHRH):**
 • GH is a polypeptide,
 • GH is homologous with Prolactin and Human Placental Lactogen

• **Corticotrophin-related Hormones:**
 • They are components of Proopiomelanocortin (POMC);
What hormones are in the Glycoprotein class?

• Hormones in the Glycoprotein class are:
 • LH,
 • FSH,
 • TSH,
 • Human Chorionic Gonadotrophin (hCG) – from Placenta;
What are the hormones in the GHRH class?

Hormones in the GHRH class include:

- GH,
- Prolactin (PRL),
- Human Placental Lactogen (HPL) – from Placenta
- Insulin-like Growth Factor (IGF) – from Liver;
What are the hormones in the CRH class?

- Hormones in the CRH class are:
 - ACTH,
 - MSH,
 - Endorphins,
 - Enkephalins,
 - Lipotrophins;
What factors affect secretion of Growth Hormone?

• Secretion of GH can be enhanced by:
 • GHRH,
 • Somatostatin;
 • Sleep, Stress, Exercise,
 • Starvation,
 • Hypoglycemia;

• Secretion of GH can be suppressed by:
 • GH (Negative Feedback control)
 • IGF
 • Obesity,
 • Hyperglycemia;
What mechanism regulates secretion of Growth Hormone?

• GH is regulated by Negative Feedback Mechanism

• Fig 2:
 • Diagrammatic representation of Negative Feedback mechanism for regulation of GH secretion;
 • Hypothalamus – Anterior Pituitary – Axis for GH
 • Role of Gherelin and Somatostatin are indicated in the diagram;
Fig. 2: Hypothalamus – Anterior Pituitary – Axis for GH

- Hypothalamus
 - GHRH
 - +
 - Anterior Pituitary
 - +
 - GH
 - +
 - Liver
 - +
 - IGF-1 (Somatomedin C)
 - +
 - Somatostatin
 - +
 - Gherelin
 - +
Briefly explain the regulation of GH secretion (Fig. 2)

- Hypothalamus secretes GHRH,
- GHRH acts on Anterior Pituitary to produce GH,
- GH acts on Liver to produce Somatomedins peptides;
 - Insulin-like Growth Factor-1 (IGF-1) called Somatomedin C is the major factor produced;
 - Gherelin, from stomach also stimulates GH secretion;
- High levels of IGF-1 and GH stimulate production of Somatostatin in the Hypothalamus,
- Somatostatin inhibits the secretion of GH;
- High plasma levels of IGF-1 exert Negative Feedback on Anterior Pituitary to modify action of GHRH and to inhibit secretion of GH;
What factors that affect secretion of Prolactin?

• Secretion of Prolactin can be **enhanced** by:
 • TRH,
 • Dopamine Antagonists,
 • Breast-feeding,
 • Pregnancy,
 • Stress,

• Secretion of Prolactin can be **suppressed** by:
 • Dopamine (PIF),
 • Dopamine Agonists,
 • Prolactin (Negative Feedback control),
 • Somatostatin,
What are the Posterior Pituitary Hormones?

- Posterior pituitary produces two polypeptide hormones;
 - **Arginine Vasopressin (AVP)**
 - Formally called Anti-Diuretic Hormone (ADH);
 - **Oxytocin**;
What are the functions of Posterior Pituitary Hormones?

- Functions of Posterior pituitary hormones:
 - Arginine Vasopressin (AVP):
 - Increases Aquaporins on distal tubules and collecting ducts in Kidneys;
 - Action causes Reabsorption of water via distal tubules and collecting ducts;
 - Causes constriction of Vascular Smooth Muscle;
 - Oxytocin:
 - Induces contraction of Uterus;
 - Increases Milk production by inducing contraction of mammary glands;
What factors affect the secretion of Oxytocin?

• Oxytocin secretion is regulated by several factors:
 • Secretion is regulated via the Neuro-endocrine reflex arc initiated by suckling;
 • Dilation of the Cervix,
 • Breast-feeding,
What factors affect the secretion of Arginine Vasopressin?

- Factors that causes **increase secretion** of AVP:
 - Increased Plasma Osmolality (sensed by Hypothalamic Osmo-receptors),
 - Reduction in blood volume (sensed by Cardiac Baro-receptors),
 - Reduction in blood pressure,
 - Stress,
 - Hypoglycemia,
 - Nausea,
 - Pain,
Factors that causes decrease secretion of AVP:

• Decrease Plasma Osmolality,
• Release of Atrial Natriuretic Peptide (ANP),
• Alpha-Agonists,
REFERENCES

• Textbook of Biochemistry, with clinical correlations, Ed. By T. M. Devlin, 4th Ed.

• Biochemistry, By V. L. Davidson & D. B. Sittman. 3rd Edition.

• Hames BD, Hooper NM, JD Houghton; Instant Notes in Biochemistry, Bios Scientific Pub, Springer; UK.