Briefly outline the structure of Hemoglobin (Hb)
- Hemoglobin (Hb) consists of four (Tetramer) sub-units held together by multiple non-covalent interactions
- Each subunit consists of Heme (Ferro-Protoporphyrin) and Globin protein
- Globin protein folds around Heme group forming Hydrophobic pocket that protects the Heme, which is the site of Oxygen binding
- HbA1 is major (98%) form in adults: represented as $\alpha_2 \beta_2$
- HbA2 is a minor (2%) form in adults: represented as $\alpha_2 \delta_2$

What are the major sources of Heme in humans?
- RBC is largest repository of Heme in humans
 - Life span of RBC is about 120 days
- Other sources of Heme include:
 - Myoglobin (Mb): stores oxygen in muscle cells
 - Cytochromes: present in some enzymes
 - Catalase: an enzyme
- Daily turnover of Hb is about 6 g/day, which presents two problems
 - Protoporphyrin Ring in Heme is Hydrophobic and therefore must be made soluble before it is excreted
 - Iron must be conserved for new Heme synthesis

What normally happens to RBC after 120 days?
- Destruction of RBC occurs mainly in Reticuloendothelial system (Extra-vascular system: Spleen and Liver)
 - Hb is broken down
 - Globin protein is recycled or converted to amino acids for reuse, or catabolised as required
 - Iron (Fe) enters Iron pool, for reuse
 - Iron-free Protoporphyrin ring of Heme is degraded, mainly in Reticuloendothelial cells of liver, spleen and bone marrow

Explain formation of Bilirubin from Heme
- Heme is degraded primarily in Reticuloendothelial cells by Microsomal Enzyme system that requires O_2 and NADPH
- Heme Oxygenase catalyzes break down of Heme to:
 - Biliverdin, Ferric iron (Fe^{3+}), and Carbon Monoxide (CO)
- Iron is conserved for reuse, Carbon Monoxide is excreted through the lungs and can be measured in the breath
- CO content of expired air is a direct measure of activity of Heme Oxygenase and the rate of Heme metabolism
- Biliverdin is reduced to **Unconjugated Bilirubin** in a reaction catalyzed by **Biliverdin Reductase** that requires NADPH (Fig. 1)

- Unconjugated Bilirubin is Hydrophobic, thus it is insoluble in water
- Unconjugated bilirubin is transported in plasma tightly bound to albumin
- Unconjugated Bilirubin also binds to other proteins and to RBC
- Presence of endogenous and exogenous binding competitors, such as certain drugs, also decreases the binding affinity of albumin for bilirubin
- Small fraction of unconjugated bilirubin in plasma is not bound to albumin
- Free unconjugated bilirubin can cross membranes, including blood-brain barrier, leading to Neuro-toxicity
TAKE NOTE OF THE FOLLOWING

- 1.0g of Hb yields about 35.0mg of Bilirubin
- In healthy adult, between 250 to 350 mg Bilirubin is formed daily;
 - Derived mainly from Hb, but also from ineffective erythropoiesis and from various other Heme proteins such as, Mb and Cytochromes P450
- About 100 ml of plasma can dissolve approximately 25 mg of Bilirubin that is tightly bound to albumin,
- Bilirubin in excess of 25 mg can be bound only loosely to albumin, thus it can easily be displaced from albumin and diffuse into tissues
- Antibiotics and other drugs compete with bilirubin for high-affinity binding sites on albumin
 - These compounds can displace bilirubin from albumin and therefore have significant clinical effects
- Color of Biliverdin is Blue-green, color of Bilirubin is Yellow-red
- Change in color as Biliverdin is converted to Bilirubin is partly responsible for progressive changes in color of a Hematoma, or Bruise, in which damaged tissue changes its color from:
 - Initial Dark Blue to Red-Yellow and finally to Yellow color before all the pigments are transported out of the affected tissue

What are the stages of Bilirubin metabolized in the liver?
- Metabolism of Bilirubin in liver is divided into three stages:
 - Uptake of Bilirubin by Liver cells (Hepatocytes),
 - Conjugation of Bilirubin in Smooth Endoplasmic Reticulum in Hepatocytes,
 - Secretion of Conjugated Bilirubin into Bile

Explain the uptake of Bilirubin by Liver cells
- Bilirubin-albumin complex reaches the liver
 - Bilirubin is transported into Hepatocytes, where it partially binds to the protein Ligandin
 - Uptake of bilirubin into Hepatocytes increases with increasing Ligandin concentration
 - Ligandin concentration is low at birth, but increases rapidly over the first few weeks of life
- In the liver, bilirubin is removed from albumin and taken up at the Sinusoidal surface of Hepatocytes by special transport system
- Net uptake of bilirubin in liver depends upon the removal of bilirubin by subsequent metabolic pathways in the liver

How is Bilirubin conjugated in the liver?
- Process of converting non-polar bilirubin molecules to polar bilirubin molecules, which are readily soluble in bile, is called Conjugation
- Conjugation occurs in Hepatocytes
- Conjugation involves addition of Glucuronic Acid molecules to Bilirubin
- Bilirubin is converted to Bilirubin Diglucuronide (conjugated bilirubin)
Reaction is catalyzed by UDP-Glucuronyl Transferase located in the Smooth Endoplasmic Reticulum

- Bilirubin excreted in the bile is Conjugated Bilirubin

UDP-Glucuronyl Transferase

\[
2 \text{UDP-Glucuronic Acid} + \text{Bilirubin} \rightarrow \text{Bilirubin Diglucuronide}
\]

How is Conjugated Bilirubin secreted into Bile?

- Secretion of conjugated bilirubin into bile occurs via an Active Transport mechanism, which is rate-limiting for the entire process of hepatic bilirubin metabolism
- Under normal physiological conditions, all the bilirubin secreted into bile is conjugated
- After phototherapy, significant quantities of unconjugated bilirubin can be found in bile (Why?)
 - Phototherapy converts unconjugated bilirubin to Lumirubin which is hydrophilic
- De-conjugation of conjugated bilirubin by β-Glucuronidase located in brush border, can occur in proximal small intestine
 - Unconjugated bilirubin formed can be reabsorbed into the circulation, increasing the total plasma unconjugated bilirubin pool
- Cycle of bilirubin Uptake, Conjugation, Excretion, De-conjugation, and Reabsorption are termed: **Enterohepatic Circulation of Bilirubin**

How is Conjugated Bilirubin metabolized in the Intestine?

- Conjugated bilirubin in bile reaches Terminal Ileum and Large Intestine,
 - Conjugated bilirubin may be De-conjugated by bacterial enzymes, resulting in Enterohepatic circulation of bilirubin
- Fecal flora converts remaining conjugated bilirubin into Urobilinogens
- Some Urobilinogen is reabsorbed and re-excreted via the liver to constitute **Intra-hepatic Urobilinogen cycle (Fig. 3)**
- Some Urobilinogen is excreted in the urine
- Urobilinogens in Colon are excreted in feces and oxidized to Urobilins
- Darkening of feces upon standing in air is due to oxidation of residual Urobilinogens to Urobilins
Fig 3: Metabolism of Bilirubin showing Intra-hepatic Urobilinogen cycle
HYPERBILIRUBINEMIA

What is Hyperbilirubinemia?
- Hyperbilirubinemia is accumulation of Bilirubin in blood
- Hyperbilirubinemia: Bilirubin level in blood exceeds 1.0 mg/dL (17.1 µmol/L)

List some causes of Hyperbilirubinemia
- Production of more bilirubin than the normal liver can excrete, or
- Failure of a damaged liver to excrete bilirubin produced in normal amounts
- Obstruction to excretory ducts of the liver (preventing excretion of bilirubin)
- **Unconjugated Hyperbilirubinemia**: due to accumulation of unconjugated bilirubin in blood
- **Conjugated Hyperbilirubinemia**: due to accumulation of conjugated bilirubin in blood

List three major reasons for Hyperbilirubinemia
- Hemolysis:
 - Increased Hb breakdown produces Bilirubin, which overloads the conjugating mechanism in the liver
- Failure of conjugating mechanism within Hepatocytes,
- Obstruction in Biliary system

How can Hyperbilirubinemia be classified?
- Depending on the type of bilirubin (conjugated bilirubin or unconjugated bilirubin) present in the plasma, Hyperbilirubinemia may be classified as follows:
 - **Retention Hyperbilirubinemia**: Due to overproduction of bilirubin
 - **Regurgitation Hyperbilirubinemia**: Due to reflux into the blood stream because of biliary obstruction

What is Jaundice?
- Jaundice (Icterus) is yellowish discoloration of Skin and Sclera due to deposit of Bilirubin
 - Occurs when Bilirubin in blood is about 2 – 2.5 mg/dl,
- Hyperbilirubinemia can occur without jaundice, but jaundice cannot occur without Hyperbilirubinemia

Give a simple classification of the causes of jaundice
- Causes of jaundice can be classified as follows:
 - Pre-hepatic jaundice (e.g., Hemolytic anemia),
 - Hepatic jaundice (e.g., Hepatitis),
 - Post-hepatic jaundice (e.g., Obstruction of common bile duct)
Types of Hyperbilirubinemia and Jaundice

- **Increased production**
 - e.g., Haemolytic anaemia, Spherocytosis, Rhesus incompatibility

- **Impaired hepatic uptake, conjugation and secretion**
 - e.g., Toxins, Virus

- **Impaired secretion**
 - *Intrahepatic*
 - e.g., Cirrhosis, infiltrations
 - *Posthepatic*
 - e.g., Gallstones, tumour

Type of hyperbilirubinaemia

- **Prehepatic**
 - (unconjugated bilirubin increased)

- **Hepatocellular**
 - (conjugated and unconjugated bilirubin increased)

- **Cholestatic-intrahepatic and posthepatic**
 - (conjugated bilirubin mainly increased)
TAKE NOTE:

- Encephalopathy due to Hyperbilirubinemia (Kernicterus) can occur only in connection with unconjugated hyperbilirubinemia, as found in Retention Hyperbilirubinemia.
- Conjugated bilirubin is soluble in water, thus only Conjugated bilirubin can appear in the urine.
- **Choleric Jaundice** (Choluria = presence of biliary derivatives in urine) occurs only in Regurgitation Hyperbilirubinemia (Why?)
- **Acholuric Jaundice** occurs only in the presence of excess unconjugated bilirubin (Retention Hyperbilirubinemia).

What laboratory tests are used to distinguish between the various types of jaundice?

- Measurements of:
 - Plasma Conjugated Bilirubin
 - Total Bilirubin,
 - Urinary Urobilinogen and Bilirubin,
 - Certain plasma enzymes
 - Inspection of Stool samples